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ON A POWER SERIES EXPANSION OF THE GRAVIATIONAL POTENTIAL OF AN 
INHOMOGENEOUS ELLIPSOID* 

1.1. KOSENKO 

An algorithm is given for successively computing the partial derivatives 

of the gravitational potential of an inhomogeneous ellipsoid, whereby the 

power expansion of this function can be constructed. The relevant 

recurrence procedures are proved. The coefficients of the Taylor series 

of the potential can be used when analysing the stability of points of 

libration. Ways of applying the results are indicated. The case of a 

homogeneous ellipsoid was considered in /l-3/. 

1. The power function. Our aim below is to obtain an efficient algorithm for com- 

puting the coefficients of the power expansion of the Hamiltonian function in the problem of 

the motion of a point in the gravitational field of an inhomogeneous rotating ellipsoid. For 

this, we in fact need to compute the Taylor series for the gravitational potential. 

Let 6 :RS-+R+ be the density, specifying the mass distribution in the ellipsoid, where 

R, = {z E R: z > 0). It is such that 6: x-+&(p),where p numbers the ellipsoids of the one- 

parameter family of like elliposids: 

zi (i = 1,2,3) are coordinates in RS, and al (i = 1,2,3) are the semi-axes of the chosen initial 

ellipsoid. The function 6 specifies the finite Radon measure s(x)dx, where dx is the 

ordinary Lebesgue measure in R’. The measure has to be finite, since the gravitating mass 

c 
6 (x) dx = 4naiazas 

iv 
s 

61 (x”) x2 dx = m < + 00 (1.1) 
R+ 

is finite, or 6 E L, (Rs). 
We can justify a study of this distribution because it approximately gives the density 

for certain ellipsoidal objects in the dynamics of star systems. The latter may be elliptic 

galaxies or the ellipsoidal centres of certain spiral galaxies. 

The summability condition for 6 leads to the summability of 6, E J?& [&i-w), since the 

function i&(xg)xa(a> 0) is integrable in the set [e, foe) . Turning to the case of an interior 

point, described in /4/, we obtain the relation for the power function 

(1.2) 

CO=A$ 
k-l 

S(s)=+fW &, R(u) = [(al2 + a) (a2 + a) (~2, + all”* 

Here, f is the gravitational constant and s satisfies the equation 

The case of 

interpreted as a 
Let us show 

an exterior point in essence leads to the previous case if the density is 

distribution. 
that the relations for the potential obtained in /4/ alsoholdwhen 6 EL, (R’). 

In particular, we shall prove (1.2). The only thing that might stop us is divergence to zero 

with respect to the variable p of the integral in (1.2). 

We write 
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V(x)=Us(x)+ -b(x), Ae(x)=f - d 6 (Y) dY 
Ilx-YU 

e 

(i,(x)=fnolu~.~8i(p)S(r)4++SiSi(p)S(O)~~] 
Ir, 

where U, is the gravitational potential of the layers external to the ellipsoid D,, specified 
by the inequality rr~/s12 + ~~~/a,* + rsa/a,2 Q s, 11 . u is the Euclidean norm in RS. 

For, if 6 E L,(R3), then the Newtonian potential 

is a locally Lebesgue-integrable function (see e.g., 15, p-24/), defined almost everywhere. 
Since a Lebesgue integral is an additive set function, our expansion of U holds by virtue of 
the division Rs==(Ra\D,) U D,. The integral as a set function has the property of absolute 
continuity (/6, p.282/). Hence A,(x)-0 as e-0, and finally Ue(x)- U(x), XER~\(O). 

We specify the absolutely continuous function 

It is well defined, since 6, EL, [P, +m) for any P> 0. Usinq the extension to the case 
of a Lebesgue integralofthe formula for integration by parts (/7/,p292/) in the limits 
s Q P Q +a, , and apssing in this formula to the limit as s-0, we obtain 

if we have the condition x(p)8 (s)+ 0 as P-t 0. It will automatically be satisfied e.g., if 
x(p)has a limit as P-S 0, which is true in most applications. Hence we can write the 
potential as 

+- 
u (x) = fa-miU& s w+ 

0 

We know from potential theorythat, if 6 E C-(@in the domain GcR*, then UE C-(G). 
The same is true for analyticity in G. In the case of an ellipsoidal mass distribution, 
smoothness of S, in an interval leads to smoothness of U in the corresponding ellipsoidal 
layer. 

2. Fundamental theorems. The equations of motion of a star in the coordinate system 
rotating with angular velocity o along with the galaxy about its principal central axis of 
inertia are 

. . 
21 -20x; - Wax1 = V,, 2; + ZeXz, - O%a = v,, 5; = u, 

We transform to dimensionless variables in accordance with the relations t = ?//o, 51 = 

ZE* (i = 1, 2, 3), P = al" + u,a + at8 and obtain the new equations of motion 

El" - 2En' - %I = A&, 6" i- 2%,' - b = At* %3* = Aa 

The prime denotes differentiation with respect to the new independent variable T. In dimension- 
less variables the power function is 

If we perform a Legendre transformation and pass to the Hamiltonian system 

r=H,,q'=-Ha, 5, PER' 
the Hamiltonian becomes 

(2.1) 

(2.2) 



144 

To study the local behaviour of this system in the neigbbouxhood of a position of equili- 
brium, we need to know the power series expansion of H. For this, we have to compute the 
expansion of the function A. This means in practice that we must be able to calculate the 
partial derivatives of A of the requisite order. 

It will be assumed throughout that the function x (or h) is bounded, as we assumed when 
obtaining the expression for the potential. When evaluating the partial derivatives of A(%), 
we require differentiation of the function I: RS\ {0)-+-R given by 

I(%)=PF(e* %)h[Ir@, %)lcEu (2.3) 
0 

where h and @ are given by (2.1). The function F: R+ X (RS\ {O}) -+R is analytic and is given 
by 

where P,'(%) (i -2 1, 2; k = 0, . . ., n) are polynomials in &, fe, Es, and all the Pzk(Q depend 
only on %$ (i = 1, 2, 3) and have positive coefficients. Moreover, deg pzo>i and with % 3 
RS \ {0}, Pno(%)> 0 fit is positive definite). 

Evalutation of thenext derivative of higher order implies obtaining integrals of type 
(2.3) with integrands of type (2.4), in which all the above properties of polynomials Pi'(%) 
(i = 1,2; k = 0, . . ..n) are satisfied. At the start of this process, starting from (2.1), we 
must put F(u,%)= F,(u)= p/Q(u). The functions (2.4) with these properties form a module M 
over the ring of polynomials RI&, &, &I of three variables with real coefficients. 

Theorem 1. If MEL, and F=MM, then IEC1 (Rs\ (0)) and we have 

and also 

(2.7) 

(2.8) 

Proof. The proof is quite laborious. The outline and main ideas are as follows. It is 
all a question Of justifying differentiation with respect to the variables %*(i = 1,.&s), as 
with respect to the parameters, under the improper integral sign of (2.3). For this, we write 
(2.3) as 

where the variables of integration u and p are assumed to be connected by the second equation 
of (2.1). 

We next considertheresult of a formal differentiation of (2.3) with respect to Ei : 

W-9 

By means of estimates for the factors and terms of the integrand, we can obtain the 
inequality 

1 [(F*‘LQ + F&) us + pa$EJ ’ I < cP-” * 
which holds finally as p-t-0 uniformly in any sufficiently small neighbourhood V of any point 
%E R’\ (0) (V must have a compact closure). Theimproper integral in (2.9) is thus locally 
uniformly convergent and, by a well-known theorem of analysis (/8/,p.794 1, the differentiation 
formula (2.9) is valid. 

The proof of (2.61, (2.7) is obtained by direct evaluations in (2.91, using integration 
by parts. The fact that GEM (see (2.8)) is proved by noting that both terms on the right- 
hand side of (2.7), and hence their sum G, belongs to module M. 
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Relations (2.6) and (2.7) enable us to evaluate any partial derivatives of the function 
A, using a standard recurrence procedure, provided, of course, that in domain VcRa\ (0) 
derivatives of sufficiently high order of the function y 0 PO exist (in the ellipsoidal layer 
covering the domain V). 

Corollary. Under the conditions of Theorem 1, the potential A of the ellipsoidal dis- 
tribution have in Ra\ (0) continuous partial derivatives of first order, and second-order 
derivatives which are defined almost everywhere. 

Proof. For clearly, in view of (2.8), the integral in (2.6) (the second term on the 
right-hand side) converges uniformly in a fairly small neighbourhood V of any fixed point 

&E R* \ (0). and hence is a continuous function in R*\{O). The first term in (2.6) is likewise 
a continuous function in RS\ (O), since h is continuous. With regard to the second derivatives, 
the same Theorem 1 guarantees continuous derivatives of the second term of (2.6). For the 
first term, however, the derivatives are defined almost everywhere, since the function h is 
absolutely continuous. 

If is often more convenient to have expressions for the derivatives directly in terms 
of density y. For this, we use. 

Theorem 2. If, in a neighbourhood V of the point 6"~ Ra\ {0}, the function YOPOE 

Cp(V),p E N, while y E L, (R,), then in this neighbourhood LIE@+*(V), and given any integer 
k such that 2,<k<p+2, we have 

ll--8 

DkM) =~&(5)Y"'lP&)l + (2.10) 
i=O 

s 
F (4 %)Y [I.L(u, %)]du, Y(i) = 3, %EV 

R+ 

where Ri are rational functions, defined in Rs\ {0}, while the function FE M, and in its 
representation (2.4) we have to put P,"(f)=O, and Dkis the differential operator 

Proof. Weuseinduction on k, starting with k = 2. 
By Theorem 1, we can obtain by direct calculations 

A&$ (%I = - 2%iP 6 YlP(% &)I du 

, + (ai+ Q (4 

and for the second-order derivatives: 

in V: 

(i'i, 2, 3) 

s F(u, %)v[P(w %)]du (i, j= 1, 2, 3) 
R+ 

(2.11) 

(2.12) 

F(u, %)= --$& &Fi(u, %I- [$&]~Fi(u. 6) 

Fl(u, ,=2~%~[(q+.)P(u)~~]- 
Clearly, F(u,%) has the form required in the theorem and has the necessary properties. 
If we make the inductive assumption that (2.10) holds for some k>2, then, by using 

Theorem 1 for the integral appearing in (2.10) and performing the appropriate calculations, 
we obtain the relations 

(2.13) $-[DQ(%)I=~%~F(O~ %)v[P~(%)I (~t$)’ + 
l==ll 

k-S 

5 G (u, %) Y [P (~9 

R+ 

%)I C&J i- $ (2 Rj (6) I”” [PO (%)I} 

I+ 

G(u, %)=a&Gi(u, %)+[A 
v 

,JqTw F 3 
a GI(u, %) 

1 

4@, %)=F(u, %)[z&]-' (i=*, 2, 3) 
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We can reduce (2.13) to the form (2.10): 

k-1 

-&- [D'A (%)I = x Qj (E) 9) [PO (%)I + S G (~9 f) Y [P (~9 %)I du 

(il1, 2, 3) +=I 
R+ 

where Qi(%) are rational functions, while G (n, %), like F (u, f), satisfies the conditions 
of the theorem. 

Using (2.131, we can computer-evaluate automatically the coefficients of the power 
expansion of the Hamiltonian function II in the neighbourhood of an equilibrium position, up 

to any required order, provided, of course, that y is suitably smooth. In combination with 
methods for the automatic evaulation of normal forms H (e.g., the Depris-Hory method*, 

(*Markeev A.P. and Sokol'skii A.G., Some computational algorithms for the normalization of 
Hamiltonian systems, Preprint In-ta prikl. matem. Akad. Nauk SSSR, Moscow, 31, 1976.) we 
can obtain a method for a numerical-analytic study of the equilibrium positions of the problem 

mentioned at the start 

The author thanks 

of Sect.2. 
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APPROXIMATE SOLUTION OF SOME PERTURBED BOUNDARY VALUE PROBLEMS* 

L.D. AKULENKO and A.S. SHAMAYEV 

A perturbation method for solving some linear boundary-value eigenvalue 

and eigenfunction problems is developed and justified. The class of 

problem considered is frequently encountered in applications when 
investigating elastic oscillatory systems with distributed and slightly 

variable parameters (a string, an elastic shaft, a beam, etc.), described 

by boundary value problems for hyperbolic-type equations with variable 

coefficients. A procedure for the approximate solution of these problems 

is developed with the required degree of accuracy with respect to the 

small parameter characterising the non-homogeneity. In particular, 

Dirichlet's problem, describing the oscillations of non-homogeneous elastic 

systems with clamped ends, is considered. 

1. Formulation of the problem. The eigenvalue and eigenfunction problem for a 
linear perturbed second-order equation is considered in the real domain: 
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